

Optimizing Multiplicative Inverse Computation

David J. Walling

david.walling@yahoo.com
September 12, 2007

Abstract

This contribution considers several optimizations of a well-known
algorithm for multiplicative inverse computation modulo 2b. The
algorithm is suitable for contemporary general purpose computers where b
is the size in binary digits of a processor register. The optimizations
facilitate more efficient modular multiplication when the lowest-order
word of the reciprocal must be found. Such is the case when using
Montgomery multiplication, which applies m' = -m-1 mod R, where m is a
radix b integer of size n words, R = bn, and gcd(m,R) = 1. Analyses and
sample implementations are provided.

1. Introduction.

 The general purpose digital computer directly performs its various logical and
arithmetic operations on values within its processor registers. Arithmetic functions of
integers with values exceeding the processor register size k bits may perform arithmetic
on multiple-precision representations such as an array of n words expressing a value W,
where b = 2k , b ≤ W < bn and W = (wnwn-1 ... w1w0)b in radix b.

Walling Optimizing Multiplicative Inverse Computation

 2

 Some applications such as RSA [7] and Diffie Hellman key exchange [1] require
exponentiation xe mod m, where 1 ≤ x < m and both x and m are sufficiently large to
render classical multiplication and division infeasible. Computational efficiencies exist
when multiple-precision modular arithmetic is performed in Zm, the integers modulo m
rather than in radix b representation1. Furthermore, Montgomery reduction [6] improves
on classical modular multiplication by reducing the need for modular reduction steps.

 The Montgomery algorithm computes the product abR-1 mod m and involves an
intermediate value xR mod m. When gcd(b,m) = 1, R may be bn and reduction proceeds
by iteratively applying the pre-computed value m' = -m-1 mod b. A few works, including
[4] and [5], suggest the Extended Euclidean algorithm to compute the multiplicative
inverse m-1 for general cases. Dussé and Kaliski contribute an efficient algorithm [2] to
produce -m0

-1 mod b. The present work suggests optimizations to this algorithm and
considers the efficient implementation of these optimizations in software.

2. Notations and Conventions.

 In addition to typical arithmetic symbols, this contribution uses the following
notations.

← The assignment operation. A ← B assigns the value B to the variable A.

gcd The greatest common divisor. gcd(95, 20) = 5 because no number greater

than five can evenly divide both 95 and 20.

mod The modulus operation. A mod B produces the remainder of the division of

A by B.

shl The logical "shift left" operation. A shl B, produces the output such that

each binary digit of A is shifted B binary digits higher in magnitude, with
zeros replacing the lowest order B binary digits.

∨ The logical "or" operation. A ∨ B is true if either A or B is true.

∧ The logical "and" operation. A ∧ B is true if both A and B are true.

≡ The congruence evaluation. A ≡ B mod n if A mod n = B mod n.

• The arithmetic multiply operation. A • B is the product of A and B.

Mn The subscripted numeral following the variable, e.g. Mn, represents the nth

element or word in the multi-precision integer M, where M0 is the lowest-
order word of M and Mn-1 is the highest order word of M.

1 [3] pp. 284-294, [5] pp. 67-70.

Walling Optimizing Multiplicative Inverse Computation

 3

3. Mathematical Preliminaries.

3.1. MULTIPLICATIVE INVERSE.

 The multiplicative inverse, or reciprocal, of x is the number which, when
multiplied by x, yields 1. The multiplicative inverse is denoted x-1 or 1/x. For example,
the real multiplicative inverse of 237 is approximately 0.0042194092827. In modular
arithmetic, the number x has a reciprocal x' mod m if x < m and gcd(x,m) = 1.

 The Extended Euclidean algorithm produces integers which are modular
multiplicative inverses.2 In other words, the product of the m-bit integer x and its modular
inverse x' ≡ 1 mod m, provided that x < m. For example, the modular inverse of 237
(0xED), an 8-bit integer, is 229 (0xE5) because 237 · 229 = 54,273, which is congruent to
1, modulo 256 or 28.

 Figure 1 illustrates the binary representation of this example. The product a · x,
54,273, can be seen to be congruent to 1 mod m, where m = 2b and x < m.

 1110 1101 237
x 1110 0101 x 229
 ------------------- ------
= 1101 0100 0000 0001 = 54,273
MOD 0000 0001 0000 0000 MOD 256
 ------------------- ------
= 0000 0000 0000 0001 = 1

FIG. 1. Modular Multiplicative Inverse.

3.2. RESIDUE SYSTEMS.

 Montgomery reduction3 produces the modular residue of the integer x as being the
remainder of x • 2k divided by the k-bit integer m, where x < m. A residue system is the
set of remainders for all x • 2k divided by the k-bit integer m, where x < m.

3.3. A SAMPLE RESIDUE SYSTEM.

Given: 2k-1 ≤ m < 2k, r = 2k,
 x < m, x' = x • r mod m

If k = 4, m = 13, then r = 24 = 16, and for each integer x < m, the residue x' is shown in
the following table.

2 [5] p. 85, Algorithm 2.226.
3 [5] pp. 600-603.

Walling Optimizing Multiplicative Inverse Computation

 4

x x •••• r x •••• r mod m
1 • 16 = 16 mod 13 = 3
2 • 16 = 32 mod 13 = 6
3 • 16 = 48 mod 13 = 9
4 • 16 = 64 mod 13 = 12
5 • 16 = 80 mod 13 = 2
6 • 16 = 96 mod 13 = 5
7 • 16 = 112 mod 13 = 8
8 • 16 = 128 mod 13 = 11
9 • 16 = 144 mod 13 = 1
10 • 16 = 160 mod 13 = 4
11 • 16 = 176 mod 13 = 7
12 • 16 = 192 mod 13 = 10

FIG. 2. Sample Residue System.

Thus it can be seen in the table above that the residue system for k = 4, m = 13 is a
complete system for there is a 1:1 correspondence between each residue 1 ≤ x' < m and
it's integer x.

3.4. MONTGOMERY PRODUCT.

 The Montgomery multiplication algorithm uses residues and a multiplicative
inverse to efficiently produce products required during the exponentiation process. The
Montgomery product is the residue c' = a' • b' • r-1 mod m, where r-1 is the modular
multiplicative inverse of r mod m.

Given 2k-1 ≤ m < 2k, r = 2k

 a < m, a' = a • r mod m
 b' = b • r mod m
 c' = a' • b' • r-1 mod m

If k = 4
 m = 13
 a = 4
 b = 7

Then r = 24 = 16
 a' = (a • r mod m) = (4 • 16 mod 13) = (64 mod 13) = 12
 b' = (b • r mod m) = (7 • 16 mod 13) = (112 mod 13) = 8
 r-1 mod 1 = (16-1 mod 13) = 9
 c' = a' • b' • r-1 mod m = (12 • 8 • 9 mod 13)= (864 mod 13) = 6

FIG. 3. Montgomery Product.

Walling Optimizing Multiplicative Inverse Computation

 5

 Note first that we provide the reciprocal 9 of our r, 16. The computation of this
reciprocal is the subject of our algorithm and its optimizations that we will see below. For
now, we can verify this value by computing (9 • 16 mod 13) = (144 mod 13) = 1. Note
secondly that the product c', having a value of 6, is computed according to our formula,
c' = a' • b' • r-1 mod m. This value can be verified by the table introduced in the section
above for the residue system. For where the residue in that table is 6, the corresponding
integer is 2, which is the result of a · b mod m = 4 • 7 mod 13 = 28 mod 13 = 2.

 This example illustrates only the principle of the Montgomery product and the
relationship between the residue system and the corresponding set of integers from which
it is derived. Koç, Acar, and Kaliski [4] have presented algorithms that demonstrate how
the use of residues and m0', the least significant word of m', or -m-1 mod b, can reduce the
computation required to perform modular multiplication of very large integers. Those
discussions are beyond the scope of this work. We direct our attention now, then, to the
optimization of the algorithm that produces m0'.

4. Variations.

 In this section we present several variations of the algorithm. Each subsequent
variation introduces one or more optimizations developed from the previous variation.

4.1. FIRST VARIATION .

 Our starting point is a rendering of Dussé and Kaliski's algorithm [2] for
computing the least significant word of m', or simply m0'.

4.1.1. Exposition.

 Figure 4 presents the algorithm, introducing temporary variables for clarity.

Input: k = the size of a word in binary digits.
 b = the radix, or 2k.
 m0 = the least significant word of integer m, or m mod b.
Output: m0' = -m-1 mod b.

1.1 t ← 1
1.2 for i ← 2 to k do
1.3 a ← (m0 • t) mod 2i
1.4 if a ≥ 2i-1
1.5 t ← t + 2i-1
1.6 return b - t

FIG. 4. The First Variation.

Walling Optimizing Multiplicative Inverse Computation

 6

4.1.2. Principle.

 The principle of the algorithm is the accumulation of bits in the variable t for each
iteration i. The accumulated bits are of increasingly greater magnitude and are added to
the previous value of t in step 1.5 when the residue a of the least significant word of the
multi-precision integer m, that is m0, multiplied by t modulo 2i, is between 2i-1 and 2i - 1,
inclusive.

4.1.3. Observations.

 The accumulator t is initialized to 1 in step 1.1. This can be considered an
intermediate result of the iteration i = 1, which is not executed, since any odd m0 mod 2 =
1. The iteration ends when i exceeds k, the number of bits in m0. The result returned is 2k
- t, or b - t.

4.1.4. Optimizations.

 In the first variation, computing a ← (m0 • t) mod 2i in step 1.3 could be
accomplished without requiring a division by substituting a bitwise logical and operation,
hence computing (m0 • t) ∧ (2i – 1), because computing any positive product modulo a
power of two will equal a bitwise and operation against that same power of two, less one.
Figure 5 illustrates this substitution, showing the division in the left column and the
corresponding logical and operation in the right column.

 237 = 0x00ED = 1110 1101
x 5 = 0x0005 = 0101
-------- --------------
 1185 = 0x04A1 = 0100 1010 0001

 74

16 1185 = 0x04A1 = 0100 1010 0001
 112 AND 0000 0000 1111 = 15 = (2 4)-1

 65
 64
 -- --------------
 1 = 0x0001 = 0000 0000 0001

FIG. 5. Substituting logical and to compute modulus.

 The iterator i increases by one for each iteration. Therefore, the values
representing 2i-1 and 2i-1 are known for each i and follow the progression shown in
Figure 6.

Walling Optimizing Multiplicative Inverse Computation

 7

i 2 i -1 2 i-1

2 2 2-1 = 3 = 0x00011 2 1 = 2 = 0x00010
3 2 3-1 = 7 = 0x00111 2 2 = 4 = 0x00100
4 2 4-1 = 15 = 0x01111 2 3 = 8 = 0x01000
5 2 5-1 = 31 = 0x11111 2 4 = 16 = 0x10000

FIG. 6. 2i-1 and 2i-1 progression.

 It can be seen from Figure 6 that the 2i-1 and 2i-1 values for each i can be
efficiently computed by progressive shift and logical or operations. Therefore, these
values may be maintained in variables updated for each i. A variable j, for example,
representing 2i-1, can be updated for each i by shifting its value once to the left and
setting the low-order bit, or j i+1 ← (j i shl l) ∨ 1. Likewise, a variable r, representing 2i-1,
can be updated for each i by shifting the value once to the left, or r i+1 ← r i shl 1.

 Figure 7 below illustrates the use of the variables j and r in the computation of the
intermediate values a and t for iteration 3 of our example.

Given: i = 3

a ← m0 · t mod 2i 1110 1101 m0
 x 0001 t

 1110 1101
 and 0111 j = 23-1

 0000 0101 a ←

j i+1 ← (j i shl l) ∨ 1 0111 j
 shl 1110
 or 0001

 1111 j ←

t ← t + 2i-1 0001 t
 + 0100 r = 22

 0101 t ←

r i+1 ← r i shl 1 0100 r
 shl 1000 r ←

FIG. 7. Maintaining Variables for 2i-1 and 2i-1.

Walling Optimizing Multiplicative Inverse Computation

 8

 Finally, the addition of 2i-1 to t in step 1.5 and illustrated above can be
implemented with a logical or instead of an addition because 2i-1 will always be both a
power of two, therefore a single bit, and will always be greater than t due to the fact that i
increases for every iteration.

4.2 THE SECOND ALGORITHM.

4.2.1. Exposition.

Applying the few simple modifications described above derives the Second
Algorithm.

Input: k = the size of a word in binary digits.
 b = the radix, or 2k.
 m0 = the least significant word of integer m, or m mod b.
Output: m0' = -m-1 mod b.

2.1 t ← 1
2.2 r ← 2
2.3 j ← 3
2.4 for i ← 2 to k
2.5 a ← (m0 • t) ∧ j
2.6 if(a ≥ r)
2.7 t ← t ∨ r
2.8 r ← r shl 1 mod 2b
2.9 j ← (j shl 1 mod 2b) ∨ 1
2.10 return b - t

FIG. 8. The Second Algorithm.

 The principle of this algorithm remains that of the First Algorithm, accumulation
of result bits in the variable t for each iteration i. The optimizations applied include the
elimination of any explicit modular division or recomputation of 2i, 2i-1, or 2i-1.

4.2.2. Sample Implementation.

 The following source code provides an assembly language example of the Second
Algorithm, using Intel™ mnemonics for the IA32 (x86) architecture. The assembly
instructions depicted below further illustrate the preference for logical instructions rather
than arithmetic instructions.

Walling Optimizing Multiplicative Inverse Computation

 9

; in: [ebp+4] = M[0]
; out: eax = -M[0]^-1

 mov edi,1 ; t := 1
 mov esi,2 ; r := 2^(i-1) for i = 2
 mov ebx,3 ; j := (2^i)-1 for i = 2
 mov ecx,31 ; for i := 2 to k

_10: mov eax,[ebp+4] ; a := M[0]
 mul edi ; a := M[0] * t
 and eax,ebx ; a := M[0] * t MOD 2^i
 cmp eax,esi ; M[0]*t MOD 2^i >= 2^(i-1)?
 jb _20 ; no, skip ahead
 or edi,esi ; t := t + 2^(i-1)

_20: stc ; set carry
 rcl ebx,1 ; next j (2^i)-1
 shl esi,1 ; next r 2^(i-1)
 loop _10 ; next i

 neg edi ; t := b – t
 mov eax,edi

FIG. 9. A Second Algorithm Implementation.

 A closer examination of this implementation reveals a few more optimizations we
can apply at this stage. Firstly, since we are using variables r (esi) and j (ebx) to hold
values based on 2i, the variable i need not be explicitely represented as a value between 2
and k, inclusive. Therefore, we use the ecx as a loop count register from 31 down to zero.
Secondly, note that instead of computing jn+1 = (j shl 1) ∨ 1 using an or instruction after
the left shift (shl), we instead set the carry flag and rotate it (rcl) into the low-order bit
of j (ebx).

 Three areas remain now for more analysis and improvement. First, the value of
M0 is copied into the accumulator for each iteration. Secondly, M0 • t is still computed
with a multiplication instruction. Thirdly, a comparison instruction is used to evaluate a
to r. Subsequent optimizations below will eliminate the need for all of these. But before
proceeding to them, the following section presents an iterative example of the Second
Algorithm.

4.2.3. Iterative Example.

 The following table illustrates the behavior of the Second Algorithm by
reproducing the values of the variables t, r, a and j for each iteration i where M0 = 237
(0xed) and k = 32. The variable t is first initialized to 1. Then, for each iteration i, the
algorithm proceeds through to a ← (M0 • t) mod 2i, when, if this value is found to be
greater or equal to j, j is added to t. The output t multiplied by M0 can be shown to be
congruent to 1, modulo b:

Walling Optimizing Multiplicative Inverse Computation

 10

i M[0]*t j =

(2^i)-1
 a =

M[0]*t
mod 2^i

 r =
2^(i-1)

 t

 00000001
2 000000ed ∧∧∧∧ 00000003 = 00000001 ≥≥≥≥ 00000002 00000001
3 000000ed ∧∧∧∧ 00000007 = 00000005 ≥≥≥≥ 00000004 ⇒ 00000005
4 000004a1 ∧∧∧∧ 0000000f = 00000001 ≥≥≥≥ 00000008 00000005
5 000004a1 ∧∧∧∧ 0000001f = 00000001 ≥≥≥≥ 00000010 00000005
6 000004a1 ∧∧∧∧ 0000003f = 00000021 ≥≥≥≥ 00000020 ⇒ 00000025
7 00002241 ∧∧∧∧ 0000007f = 00000041 ≥≥≥≥ 00000040 ⇒ 00000065
8 00005d81 ∧∧∧∧ 000000ff = 00000081 ≥≥≥≥ 00000080 ⇒ 000000e5
9 0000d401 ∧∧∧∧ 000001ff = 00000081 ≥≥≥≥ 00000100 000000e5
10 0000d401 ∧∧∧∧ 000003ff = 00000081 ≥≥≥≥ 00000200 000000e5
11 0000d401 ∧∧∧∧ 000007ff = 00000481 ≥≥≥≥ 00000400 ⇒ 000004e5
12 00048801 ∧∧∧∧ 00000fff = 00000801 ≥≥≥≥ 00000800 ⇒ 00000ce5
13 000bf001 ∧∧∧∧ 00001fff = 00001801 ≥≥≥≥ 00001000 ⇒ 00001ce5
14 001ac001 ∧∧∧∧ 00003fff = 00000001 ≥≥≥≥ 00002000 00001ce5
15 001ac001 ∧∧∧∧ 00007fff = 00004001 ≥≥≥≥ 00004000 ⇒ 00005ce5
16 00560001 ∧∧∧∧ 0000ffff = 00000001 ≥≥≥≥ 00008000 00005ce5
17 00560001 ∧∧∧∧ 0001ffff = 00000001 ≥≥≥≥ 00010000 00005ce5
18 00560001 ∧∧∧∧ 0003ffff = 00020001 ≥≥≥≥ 00020000 ⇒ 00025ce5
19 02300001 ∧∧∧∧ 0007ffff = 00000001 ≥≥≥≥ 00040000 00025ce5
20 02300001 ∧∧∧∧ 000fffff = 00000001 ≥≥≥≥ 00080000 00025ce5
21 02300001 ∧∧∧∧ 001fffff = 00100001 ≥≥≥≥ 00100000 ⇒ 00125ce5
22 11000001 ∧∧∧∧ 003fffff = 00000001 ≥≥≥≥ 00200000 00125ce5
23 11000001 ∧∧∧∧ 007fffff = 00000001 ≥≥≥≥ 00400000 00125ce5
24 11000001 ∧∧∧∧ 00ffffff = 00000001 ≥≥≥≥ 00800000 00125ce5
25 11000001 ∧∧∧∧ 01ffffff = 01000001 ≥≥≥≥ 01000000 ⇒ 01125ce5
26 fe000001 ∧∧∧∧ 03ffffff = 02000001 ≥≥≥≥ 02000000 ⇒ 03125ce5
27 2d8000001 ∧∧∧∧ 07ffffff = 00000001 ≥≥≥≥ 04000000 03125ce5
28 2d8000001 ∧∧∧∧ 0fffffff = 08000001 ≥≥≥≥ 08000000 ⇒ 0b125ce5
29 a40000001 ∧∧∧∧ 1fffffff = 00000001 ≥≥≥≥ 10000000 0b125ce5
30 a40000001 ∧∧∧∧ 3fffffff = 00000001 ≥≥≥≥ 20000000 0b125ce5
31 a40000001 ∧∧∧∧ 7fffffff = 40000001 ≥≥≥≥ 40000000 ⇒ 4b125ce5
32 4580000001 ∧∧∧∧ ffffffff = 80000001 ≥≥≥≥ 80000000 ⇒ cb125ce5

FIG. 10. Iterative Execution of Second Algorithm.

3,406,978,277 x 237 = 807,453,851,649 (0x00BC 00000001) ≡ 1 mod 2^32.

4.2.4. Observations.

 In the Second Algorithm it is seen (step 2.5) that a is computed as M0 • t. From
the iterative example above it is seen that in each iteration i where M0 • t is recomputed,
the new value is equal to sum of the previous value t and M0 shl (i-2). For example, when
i = 7, M0 • t becomes 0x2241 , which is equal to the previous value of M0 • t, 0x4a1 , plus
M0 shl 5, 0x1da0 .

Walling Optimizing Multiplicative Inverse Computation

 11

 Secondly, step 2.5 completes by reducing (M0 • t) mod 2i. The iterative example
represents this modulo by applying a logical and (∧) operation to M0 • t with j, which is
always 2i-1. Following this, step 2.6 compares the modulus a to 2i-1. It can be seen from
the iterative example above that the combination of the modulo and comparison (≥)
operations can both be replaced by a test of the significant bit in 2i-1. For example, when i
= 12, 0x48801 modulo 0xfff produces 0x801 , which is then found to be greater than 2i-1,
0x800 . The same is found by simply applying a logical and (∧) to M0 • t and 2i-1.

 Finally, Step 2.4 iterates the algorithm from i = 2 to k. The sample
implementation shows that the iteration i no longer needs to increment from 2 to k but
can decrement from k-1 to zero. Moreover, by using a simple shl to recompute 2i-1 for
each iteration i, we can see from the iterative example that 2i-1 shl 1 will produce zero
(modulo b) when i > k. If we can test for this zero condition in 2i-1 following our shift,
then we do not need to maintain an independent variable i for the sole purpose of loop
counting.

4.3. THE THIRD ALGORITHM.

4.3.1. Exposition.

The observations above can now be applied to produce the Third Algorithm.

Input: k = the size of a word in binary digits.
 b = the radix, or 2k.
 m0 = the least significant word of integer m, or m mod b.
Output: m0' = -m-1 mod b.

3.1 a ← m0
3.2 t ← 1
3.3 i ← 2
3.4 r ← 3
3.5 while i ≠ 0 begin
3.6 if(a ∧ i) begin
3.7 t ← t ∨ i
3.8 a ← a + r mod 2b
3.9 end
3.10 r ← r shl 1 mod 2b
3.11 i ← i shl 1 mod 2b
3.12 end
3.13 return b - t

FIG. 11. The Third Algorithm

Walling Optimizing Multiplicative Inverse Computation

 12

4.3.2. Observations.

In the Third Algorithm, the modulo 2b computation of a + r, r and i in steps 3.8,
3.10, and 3.11 is accomplished implicitly when b is the size of the processor register or
word. Therefore, no instructions need to be performed to accomplish any modulo 2b
operation, if the result is stored in a register of size b bits.

Secondly, the variable r may be initialized to 1 instead of 3 or, in other words, to
2i-2, if the shift of r in step 3.10 is performed before the addition of r and a shown in step
3.8. This is an improvement because it eliminates the final shift of r in the last iteration
when i is found to be zero because the test of i is made before r is shifted. Furthermore,
assigning an initial value of 1 to both t and r may be more efficiently accomplished if a
register-to-register move instruction executes faster than an immediate-to-register move
instruction.

4.4. THE FOURTH ALGORITHM.

4.4.1. Exposition.

The observations above can now be applied to produce the Fourth Algorithm.

Input: k = the size of a word in binary digits.
 b = the radix, or 2k.
 m0 = the least significant word of integer m, or m mod b.
Output: m0' = -m-1 mod b.

4.1 a ← m0
4.2 r ← m0
4.3 t ← 1
4.4 i ← 2
4.5 while i ≠ 0 begin
4.6 r ← r shl 1
4.7 if(a ∧ i) begin
4.8 t ← t ∨ i
4.9 a ← a + r mod 2b
4.10 end
4.11 i ← i shl 1 mod 2b
4.12 end
4.13 return b – t

FIG. 12. The Fourth Algorithm

Walling Optimizing Multiplicative Inverse Computation

 13

4.4.2. Sample Implementation.

 We again represent our algorithm in assembly language for analysis.

; in: [ebp+4] = M[0]
; out: eax = -M[0]^-1

 mov ebx,[ebp+4] ; a := n
 mov edx,ebx ; r := n
 mov ecx,2 ; i := 2
 mov eax,1 ; t := 1
_10: shl edx,1 ; r := (r SHL 1) mod 2^b
 test ebx,ecx ; a & i ?
 jz _20 ; no, skip ahead
 or eax,ecx ; t := t OR i
 add ebx,edx ; a := (a + r) mod 2^b
_20: shl ecx,1 ; i := (i SHL 1) mod 2^b
 jnc _10 ; next i
 neg eax ; t := b - t

FIG. 13. A Fourth Algorithm Implementation

4.4.3. Iterative Example.

 The table below represents the values assigned to the variables r, a, t and i
through each iteration when b is 32 and the input n is 237 (0xED).

Walling Optimizing Multiplicative Inverse Computation

 14

iteration r a t i

 0x000000ed 0x000000ed 0x00000001 0x00000002
1 0x000001da 0x000000ed 0x00000001 0x00000004
2 0x000003b4 0x000004a1 0x00000005 0x00000008
3 0x00000768 0x000004a1 0x00000005 0x00000010
4 0x00000ed0 0x000004a1 0x00000005 0x00000020
5 0x00001da0 0x00002241 0x00000025 0x00000040
6 0x00003b40 0x00005d81 0x00000065 0x00000080
7 0x00007680 0x0000d401 0x000000e5 0x00000100
8 0x0000ed00 0x0000d401 0x000000e5 0x00000200
9 0x0001da00 0x0000d401 0x000000e5 0x00000400
10 0x0003b400 0x00048801 0x000004e5 0x00000800
11 0x00076800 0x000bf001 0x00000ce5 0x00001000
12 0x000ed000 0x001ac001 0x00001ce5 0x00002000
13 0x001da000 0x001ac001 0x00001ce5 0x00004000
14 0x003b4000 0x00560001 0x00005ce5 0x00008000
15 0x00768000 0x00560001 0x00005ce5 0x00010000
16 0x00ed0000 0x00560001 0x00005ce5 0x00020000
17 0x01da0000 0x02300001 0x00025ce5 0x00040000
18 0x03b40000 0x02300001 0x00025ce5 0x00080000
19 0x07680000 0x02300001 0x00025ce5 0x00100000
20 0x0ed00000 0x11000001 0x00125ce5 0x00200000
21 0x1da00000 0x11000001 0x00125ce5 0x00400000
22 0x3b400000 0x11000001 0x00125ce5 0x00800000
23 0x76800000 0x11000001 0x00125ce5 0x01000000
24 0xed000000 0xfe000001 0x01125ce5 0x02000000
25 0xda000000 0xd8000001 0x03125ce5 0x04000000
26 0xb4000000 0xd8000001 0x03125ce5 0x08000000
27 0x68000000 0x40000001 0x0b125ce5 0x10000000
28 0xd0000000 0x40000001 0x0b125ce5 0x20000000
29 0xa0000000 0x40000001 0x0b125ce5 0x40000000
30 0x40000000 0x80000001 0x4b125ce5 0x80000000
31 0x80000000 0x00000001 0xcb125ce5 0x00000000

FIG. 14. Iterative Example of Fourth Algorithm.

5. Final Observations.

5.1. PIPELINING.

 Processors that support instruction pipelining may execute the algorithm more
efficiently as follows since some sets of instructions can derive intermediate results
independently.

Walling Optimizing Multiplicative Inverse Computation

 15

 Path A Path B

 mov ebx,[ebp+4] mov ecx,2
 mov edx,ebx mov eax,1

_10: shl edx,1
 test ebx,ecx
 jz _20

 add ebx,edx or eax,ecx

_20: shl ecx,1
 jnc _10
 neg eax

FIG. 15. Pipelining.

5.2. LOOP OPTIMIZATION .
.

Unrolling the iteration i loop and providing constant values for i for each r may
improve the progression of values in i, if b is fixed.

r = a = n; t = 1;
r <<= 1; if(a & 0x00000002) { t |= 0x00000002; a += r };
r <<= 1; if(a & 0x00000004) { t |= 0x00000004; a += r };

// ...
// repeat statement, doubling the constant
// ...

r <<= 1; if(a & 0x80000000) { t |= 0x80000000; };

return(t * -1);

FIG. 16. Unrolling the Iteration Loop.

 Note that in the final iteration, r need not be added to a since reference to a is no
longer required.

 This unrolling of r, while it eliminates both the shift if i and the comparison of i to
zero, has the disadvantage of requiring an implementation that has an invariable b.
Whereas, the looping variety, if implemented in a sufficiently high-level language, such
as C, can function with any word size.

Walling Optimizing Multiplicative Inverse Computation

 16

6. Implementations.

6.1. INTEL X86-32 (IA32) (AT&T MNEMONICS).

// in: edx = ODD n
// out: eax = 1/n MOD 2^32

 movl %edx,%ebx // a := n
 movl $2,%ecx // i := 2
 movl $1,%eax // t := 1

_10: shll $1,%edx // r := (r SHL 1) mod 2^s
 testl %ecx,%ebx // a AND i ?
 jz _20 // no, skip ahead

 orl %ecx,%eax // t := t OR i
 addl %edx,%ebx // a := (a + r) mod 2^s

_20: shll $1,%ecx // i := (i SHL 1) mod 2^s
 jnc _10 // next i

FIG. 17. Fourth Algorithm for IA32 (AT&T Mnemonics).

6.2. INTEL X86-32 (IA32) (INTEL MNEMONICS).

; in: edx = ODD n
; out: eax = 1/n MOD 2^32

 mov ebx,edx ; a := n
 mov ecx,2 ; i := 2
 mov eax,1 ; t := 1

_10: shl edx,1 ; r := (r SHL 1) mod 2^s
 test ebx,ecx ; a & i ?
 jz _20 ; no, skip ahead

 or eax,ecx ; t := t OR i
 add ebx,edx ; a := (a + r) mod 2^s

_20: shl ecx,1 ; i := (i SHL 1) mod 2^s
 jnc _10 ; next i

FIG. 18. Fourth Algorithm for IA32 (Intel Mnemonics).

Walling Optimizing Multiplicative Inverse Computation

 17

6.3. S/390 ASSEMBLY LANGUAGE.

* in: %4 = ODD n
* out: %1 = 1/n MOD 2^32

 lr 2,4
 la 3,2
 la 4,1

 L10 ds 0h

 sll 4,1
 lr 5,3
 nr 5,2
 bc 8,L20

 or 1,3
 ar 2,4

 L20 ds 0h

 sll 3,1
 or 3,3
 bc 8,L10

FIG. 19. Fourth Algorithm for S/390 Assembly Language.

6.4. C.

/* in: n (ODD) */
/* out: t = 1/n MOD 2^sizeof(unsigned int) */

unsigned int r, a, t, i;

r = a = n;
t = 1;

for(i = 2; i; i <<= 1) {
 r <<= 1;
 if(a & i) {
 t |= i;
 a += r;
 }
}

return(t);

FIG. 20. Fourth Algorithm for C.

Walling Optimizing Multiplicative Inverse Computation

 18

7. References.

[1] W. Diffie and M.E. Hellman, New directions in cryptography, IEEE

Transactions on Information Theory 22 (1976), 644-654.

[2] Dussé, S. R., B. S. Kaliski Jr., A Cryptographic Library for the Motorola

DSP56000, Advances in Cryptology, Eurocrypt '90, Lecture Notes in Computer
Science, Vol. 473, pp. 230-244, Springer-Verlag, 1990.

[3] Knuth, D.E., The Art of Computer Programming 3rd. ed., Reading,

Massachusetts, Addison-Wesley, 1997.

[4] Koç, Ç. K., T. Acar, B. S. Kaliski, Jr., Analyzing and Comparing Montgomery

Multiplication Algorithms, IEEE Micro, Vol 16, Issue 3, pp. 26-33, June 1996.

[5] Menezes, A., P. van Oorschot and S. Vanstone, Handbook of Applied

Cryptography, CRC Press, 1996.

[6] Montgomery, P. L., Multiplication Without Trial Division, Mathematics of

Computation, Vol. 44, pp. 519-521, 1985.

[7] PKCS #1 v2.1: RSA Cryptography Standard, RSA Laboratories, June 14, 2002.

