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Abstract 
 

This contribution considers several optimizations of a well-known 
algorithm for multiplicative inverse computation modulo 2b. The 
algorithm is suitable for contemporary general purpose computers where b 
is the size in binary digits of a processor register. The optimizations 
facilitate more efficient modular multiplication when the lowest-order 
word of the reciprocal must be found. Such is the case when using 
Montgomery multiplication, which applies m' = -m-1 mod R, where m is a 
radix b integer of size n words, R = bn, and gcd(m,R) = 1. Analyses and 
sample implementations are provided. 

 
 

1. Introduction. 
 
 The general purpose digital computer directly performs its various logical and 
arithmetic operations on values within its processor registers. Arithmetic functions of 
integers with values exceeding the processor register size k bits may perform arithmetic 
on multiple-precision representations such as an array of n words expressing a value W, 
where b = 2k , b ≤ W < bn and W = ( wnwn-1 ... w1w0 )b in radix b. 
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 Some applications such as RSA [7] and Diffie Hellman key exchange [1] require 
exponentiation xe mod m, where 1 ≤ x < m and both x and m are sufficiently large to 
render classical multiplication and division infeasible. Computational efficiencies exist 
when multiple-precision modular arithmetic is performed in Zm, the integers modulo m 
rather than in radix b representation1. Furthermore, Montgomery reduction [6] improves 
on classical modular multiplication by reducing the need for modular reduction steps. 
 
 The Montgomery algorithm computes the product abR-1 mod m and involves an 
intermediate value xR mod m. When gcd(b,m) = 1, R may be bn and reduction proceeds 
by iteratively applying the pre-computed value m' = -m-1 mod b. A few works, including 
[4] and [5], suggest the Extended Euclidean algorithm to compute the multiplicative 
inverse m-1 for general cases. Dussé and Kaliski contribute an efficient algorithm [2] to 
produce -m0

-1 mod b. The present work suggests optimizations to this algorithm and 
considers the efficient implementation of these optimizations in software. 
 
 

2. Notations and Conventions. 

 
 In addition to typical arithmetic symbols, this contribution uses the following 
notations. 
 
← The assignment operation. A ← B assigns the value B to the variable A. 
 
gcd The greatest common divisor. gcd( 95, 20 ) = 5 because no number greater 

than five can evenly divide both 95 and 20. 
 
mod The modulus operation. A mod B produces the remainder of the division of 

A by B. 
 
shl The logical "shift left" operation. A shl B, produces the output such that 

each binary digit of A is shifted B binary digits higher in magnitude, with 
zeros replacing the lowest order B binary digits. 

 
∨ The logical "or" operation. A ∨ B is true if either A or B is true.  
 
∧ The logical "and" operation. A ∧ B is true if both A and B are true. 
 
≡ The congruence evaluation. A ≡ B mod n if A mod n = B mod n. 
 
• The arithmetic multiply operation. A • B is the product of A and B. 
 
Mn The subscripted numeral following the variable, e.g. Mn, represents the nth 

element or word in the multi-precision integer M, where M0 is the lowest-
order word of M and Mn-1 is the highest order word of M. 

                                                
1 [3] pp. 284-294, [5] pp. 67-70. 
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3. Mathematical Preliminaries. 
 
3.1. MULTIPLICATIVE INVERSE. 
 
 The multiplicative inverse, or reciprocal, of x is the number which, when 
multiplied by x, yields 1. The multiplicative inverse is denoted x-1 or 1/x. For example, 
the real multiplicative inverse of 237 is approximately 0.0042194092827. In modular 
arithmetic, the number x has a reciprocal x' mod m if x < m and gcd(x,m) = 1. 
 
 The Extended Euclidean algorithm produces integers which are modular 
multiplicative inverses.2 In other words, the product of the m-bit integer x and its modular 
inverse x' ≡ 1 mod m, provided that x < m. For example, the modular inverse of 237 
(0xED), an 8-bit integer, is 229 (0xE5) because 237 · 229 = 54,273, which is congruent to 
1, modulo 256 or 28. 
 
 Figure 1 illustrates the binary representation of this example. The product a · x, 
54,273, can be seen to be congruent to 1 mod m, where m = 2b and x < m. 
 
 

              1110 1101         237 
x            1110 0101  x      229 
    -------------------      ------ 
=   1101 0100 0000 0001  =   54,273 
MOD 0000 0001 0000 0000       MOD    256 
    -------------------      ------ 
=   0000 0000 0000 0001  =        1 

 
FIG. 1. Modular Multiplicative Inverse. 

 
3.2. RESIDUE SYSTEMS. 
 
 Montgomery reduction3 produces the modular residue of the integer x as being the 
remainder of x • 2k divided by the k-bit integer m, where x < m. A residue system is the 
set of remainders for all x • 2k divided by the k-bit integer m, where x < m. 
 
3.3. A SAMPLE RESIDUE SYSTEM. 
 
Given: 2k-1 ≤ m < 2k,  r = 2k, 
 x < m,  x' = x • r mod m 
 
If k = 4, m = 13, then r = 24 = 16, and  for each integer x < m, the residue x' is shown in 
the following table. 

                                                
2 [5] p. 85, Algorithm 2.226. 
3 [5] pp. 600-603. 
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x  x •••• r  x •••• r mod m 
1 • 16 = 16 mod 13 = 3  
2 • 16 = 32 mod 13 = 6 
3 • 16 = 48 mod 13 =  9 
4 • 16 = 64 mod 13 = 12 
5 • 16 = 80 mod 13 = 2  
6 • 16 = 96 mod 13 = 5 
7 • 16 = 112  mod 13 = 8  
8 • 16 = 128 mod 13 = 11 
9 • 16 = 144  mod 13 = 1  
10 • 16 = 160 mod 13 = 4 
11 • 16 = 176  mod 13 = 7  
12 • 16 = 192 mod 13 = 10 

 
FIG. 2. Sample Residue System. 

 
Thus it can be seen in the table above that the residue system for k = 4, m = 13 is a 
complete system for there is a 1:1 correspondence between each residue 1 ≤  x' < m and 
it's integer x. 
 
3.4. MONTGOMERY PRODUCT. 
 
 The Montgomery multiplication algorithm uses residues and a multiplicative 
inverse to efficiently produce products required during the exponentiation process. The 
Montgomery product  is the residue c' = a' • b' • r-1 mod m, where r-1 is the modular 
multiplicative inverse of r mod m.  
 

Given 2k-1 ≤ m < 2k, r = 2k 

 a < m,  a' = a • r mod m 
 b' = b • r mod m 
 c' = a' • b' • r-1 mod m 
 
If k = 4 
 m = 13 
 a = 4 
 b = 7 
 
Then r = 24 = 16 
 a' = ( a • r mod m ) = ( 4 • 16 mod 13 ) = ( 64 mod 13 ) = 12 
 b' = ( b • r mod m ) = ( 7 • 16 mod 13 ) = ( 112 mod 13 ) = 8 
 r-1 mod 1 = ( 16-1 mod 13 ) = 9 
 c' = a' • b' • r-1 mod m = ( 12 • 8 • 9 mod 13 )= ( 864 mod 13 ) = 6 

 
FIG. 3. Montgomery Product. 
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 Note first that we provide the reciprocal 9 of our r, 16. The computation of this 
reciprocal is the subject of our algorithm and its optimizations that we will see below. For 
now, we can verify this value by computing ( 9 • 16 mod 13 ) = ( 144 mod 13 ) = 1. Note 
secondly that the product c', having a value of 6,  is computed according to our formula, 
c' = a' • b' • r-1 mod m. This value can be verified by the table introduced in the section 
above for the residue system. For where the residue in that table is 6, the corresponding 
integer is 2, which is the result of a · b mod m = 4 • 7 mod 13 = 28 mod 13 = 2. 
 
 This example illustrates only the principle of the Montgomery product and the 
relationship between the residue system and the corresponding set of integers from which 
it is derived. Koç, Acar, and Kaliski [4] have presented algorithms that demonstrate how 
the use of residues and m0', the least significant word of m', or -m-1 mod b, can reduce the 
computation required to perform modular multiplication of very large integers. Those 
discussions are beyond the scope of this work. We direct our attention now, then, to the 
optimization of the algorithm that produces m0'. 
 
 

4. Variations. 
 
 In this section we present several variations of the algorithm. Each subsequent 
variation introduces one or more optimizations developed from the previous variation. 

 
4.1. FIRST VARIATION . 
 
 Our starting point is a rendering of Dussé and Kaliski's algorithm [2] for 
computing the least significant word of m', or simply m0'. 
 
4.1.1. Exposition. 
 
 Figure 4 presents the algorithm, introducing temporary variables for clarity. 

 

Input: k = the size of a word in binary digits. 
 b = the radix, or 2k. 
 m0 = the least significant word of integer m, or m mod b. 
Output: m0' = -m-1 mod b. 
 
1.1 t ← 1 
1.2 for i ← 2 to k do 
1.3  a ← ( m0 • t ) mod 2i 
1.4  if a ≥ 2i-1 
1.5   t ← t + 2i-1 
1.6 return b - t 

 
FIG. 4. The First Variation. 
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4.1.2.  Principle. 
 
 The principle of the algorithm is the accumulation of bits in the variable t for each 
iteration i. The accumulated bits are of increasingly greater magnitude and are added to 
the previous value of t in step 1.5 when the residue a of the least significant word of the 
multi-precision integer m, that is m0, multiplied by t modulo 2i, is between 2i-1 and 2i - 1, 
inclusive. 
 
4.1.3. Observations. 
 
 The accumulator t is initialized to 1 in step 1.1. This can be considered an 
intermediate result of the iteration i = 1, which is not executed, since any odd m0 mod 2 = 
1. The iteration ends when i exceeds k, the number of bits in m0. The result returned is 2k 
- t, or b - t. 
 
4.1.4.  Optimizations. 
 
 In the first variation, computing a ← ( m0 • t ) mod 2i in step 1.3 could be 
accomplished without requiring a division by substituting a bitwise logical and operation, 
hence computing ( m0 • t ) ∧ ( 2i – 1 ), because computing any positive product modulo a 
power of two will equal a bitwise and operation against that same power of two, less one. 
Figure 5 illustrates this substitution, showing the division in the left column and the 
corresponding logical and operation in the right column. 
 
 

     237    =    0x00ED    =      1110 1101 
x      5    =    0x0005    =           0101 
--------                     -------------- 
    1185 =    0x04A1    = 0100 1010 0001 
 
      74  
   -----   
16  1185    =    0x04A1    = 0100 1010 0001 
    112                  AND 0000 0000 1111 = 15 = (2 4)-1 
    ----  
      65 
      64 
      --                     -------------- 
       1    =    0x0001    = 0000 0000 0001 

 
FIG. 5. Substituting logical and to compute modulus. 

 
 The iterator i increases by one for each iteration. Therefore, the values 
representing 2i-1 and 2i-1 are known for each i and follow the progression shown in 
Figure 6.  
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i     2 i -1                    2 i-1  
 
2     2 2-1 =  3 = 0x00011     2 1 =  2 = 0x00010 
3     2 3-1 =  7 = 0x00111     2 2 =  4 = 0x00100 
4     2 4-1 = 15 = 0x01111     2 3 =  8 = 0x01000 
5     2 5-1 = 31 = 0x11111     2 4 = 16 = 0x10000 

 
FIG. 6. 2i-1 and 2i-1 progression. 

 
 It can be seen from Figure 6 that the 2i-1 and 2i-1 values for each i can be 
efficiently computed by progressive shift and logical or operations. Therefore, these 
values may be maintained in variables updated for each i. A variable j, for example, 
representing 2i-1, can be updated for each i by shifting its value once to the left and 
setting the low-order bit, or  j i+1 ← ( j i shl l ) ∨ 1. Likewise, a variable r, representing 2i-1, 
can be updated for each i by shifting the value once to the left, or r i+1 ← r i shl 1. 
 
 Figure 7 below illustrates the use of the variables j and r in the computation of the 
intermediate values a and t for iteration 3 of our example.  
 

Given: i = 3 
 
a ← m0 · t mod 2i     1110 1101  m0 
 x        0001  t 
     --------- 
     1110 1101 
 and      0111 j = 23-1 
     --------- 
     0000 0101  a ← 
 
 
j i+1 ← ( j i shl l ) ∨ 1          0111  j 
 shl      1110 
 or       0001 
          ---- 
          1111  j ← 
 
 
t ← t + 2i-1          0001  t 
 +        0100  r = 22 
     --------- 
          0101 t ← 
 
r i+1 ← r i shl 1          0100  r 
 shl      1000  r ← 

 

FIG. 7. Maintaining Variables for 2i-1 and 2i-1. 
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 Finally, the addition of 2i-1 to t in step 1.5 and illustrated above can be 
implemented with a logical or instead of an addition because 2i-1 will always be both a 
power of two, therefore a single bit, and will always be greater than t due to the fact that i 
increases for every iteration. 
 
4.2 THE SECOND ALGORITHM. 
 
4.2.1. Exposition. 
 

Applying the few simple modifications described above derives the Second 
Algorithm. 
 

Input: k = the size of a word in binary digits. 
 b = the radix, or 2k. 
 m0 =  the least significant word of integer m, or m mod b. 
Output: m0' = -m-1 mod b. 
 
2.1 t ← 1 
2.2 r ← 2 
2.3 j ← 3 
2.4 for i ← 2 to k 
2.5  a ← ( m0 • t ) ∧ j 
2.6  if( a ≥ r ) 
2.7   t ← t ∨ r 
2.8  r ← r shl 1 mod 2b 
2.9  j ←  ( j shl 1 mod 2b ) ∨ 1 
2.10 return b - t 

 
FIG. 8. The Second Algorithm. 

 
 The principle of this algorithm remains that of the First Algorithm, accumulation 
of result bits in the variable t for each iteration i. The optimizations applied include the 
elimination of any explicit modular division or recomputation of 2i, 2i-1, or 2i-1. 
 
4.2.2. Sample Implementation. 
 
 The following source code provides an assembly language example of the Second 
Algorithm, using Intel™ mnemonics for the IA32 (x86) architecture. The assembly 
instructions depicted below further illustrate the preference for logical instructions rather 
than arithmetic instructions. 
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; in: [ebp+4] = M[0] 
; out: eax = -M[0]^-1 
 
 mov edi,1   ; t := 1 
 mov esi,2   ; r := 2^(i-1) for i = 2 
 mov ebx,3   ; j := (2^i)-1 for i = 2 
 mov ecx,31  ; for i := 2 to k 
 
_10: mov eax,[ebp+4]  ; a := M[0] 
 mul edi   ; a := M[0] * t 
 and  eax,ebx  ; a := M[0] * t MOD 2^i 
 cmp eax,esi  ; M[0]*t MOD 2^i >= 2^(i-1)? 
 jb _20   ; no, skip ahead 
 or edi,esi  ; t := t + 2^(i-1) 
 
_20: stc    ; set carry 
 rcl ebx,1   ; next j (2^i)-1 
 shl esi,1   ; next r 2^(i-1) 
 loop  _10   ; next i 
 
 neg edi   ; t := b – t 
 mov eax,edi 

 
FIG. 9. A Second Algorithm Implementation. 

 
 A closer examination of this implementation reveals a few more optimizations we 
can apply at this stage. Firstly, since we are using variables r (esi ) and j (ebx ) to hold 
values based on 2i, the variable i need not be explicitely represented as a value between 2 
and k, inclusive. Therefore, we use the ecx  as a loop count register from 31 down to zero. 
Secondly, note that instead of computing jn+1 = ( j shl 1 ) ∨ 1 using an or  instruction after 
the left shift (shl ), we instead set the carry flag and rotate it (rcl ) into the low-order bit 
of j (ebx ). 
 
 Three areas remain now for more analysis and improvement. First, the value of 
M0 is copied into the accumulator for each iteration. Secondly, M0 • t is still computed 
with a multiplication instruction. Thirdly, a comparison instruction is used to evaluate a 
to r. Subsequent optimizations below will eliminate the need for all of these. But before 
proceeding to them, the following section presents an iterative example of the Second 
Algorithm. 
 
4.2.3. Iterative Example. 
 
 The following table illustrates the behavior of the Second Algorithm by 
reproducing the values of the variables t, r, a and j for each iteration i where M0 = 237  
(0xed ) and k = 32. The variable t is first initialized to 1. Then, for each iteration i, the 
algorithm proceeds through to a ← ( M0 • t ) mod 2i, when, if this value is found to be 
greater or equal to j, j is added to t. The output t multiplied by M0 can be shown to be 
congruent to 1, modulo b: 
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i M[0]*t   j = 

(2^i)-1  
 a = 

M[0]*t 
mod 2^i  

 r = 
2^(i-1)  

 t  

         00000001 
2 000000ed ∧∧∧∧ 00000003 = 00000001 ≥≥≥≥ 00000002  00000001  
3 000000ed  ∧∧∧∧ 00000007 = 00000005 ≥≥≥≥ 00000004 ⇒ 00000005 
4 000004a1 ∧∧∧∧ 0000000f = 00000001 ≥≥≥≥ 00000008  00000005  
5 000004a1  ∧∧∧∧ 0000001f = 00000001  ≥≥≥≥ 00000010  00000005  
6 000004a1  ∧∧∧∧ 0000003f = 00000021 ≥≥≥≥ 00000020 ⇒ 00000025 
7 00002241 ∧∧∧∧ 0000007f = 00000041 ≥≥≥≥ 00000040 ⇒ 00000065 
8 00005d81 ∧∧∧∧ 000000ff = 00000081 ≥≥≥≥ 00000080 ⇒ 000000e5 
9 0000d401 ∧∧∧∧ 000001ff = 00000081  ≥≥≥≥ 00000100  000000e5  
10 0000d401  ∧∧∧∧ 000003ff = 00000081  ≥≥≥≥ 00000200  000000e5  
11 0000d401  ∧∧∧∧ 000007ff = 00000481 ≥≥≥≥ 00000400 ⇒ 000004e5 
12 00048801 ∧∧∧∧ 00000fff = 00000801 ≥≥≥≥ 00000800 ⇒ 00000ce5 
13 000bf001 ∧∧∧∧ 00001fff = 00001801 ≥≥≥≥ 00001000 ⇒ 00001ce5 
14 001ac001 ∧∧∧∧ 00003fff = 00000001 ≥≥≥≥ 00002000  00001ce5  
15 001ac001  ∧∧∧∧ 00007fff = 00004001 ≥≥≥≥ 00004000 ⇒ 00005ce5 
16 00560001 ∧∧∧∧ 0000ffff = 00000001 ≥≥≥≥ 00008000  00005ce5  
17 00560001  ∧∧∧∧ 0001ffff = 00000001  ≥≥≥≥ 00010000  00005ce5  
18 00560001  ∧∧∧∧ 0003ffff = 00020001 ≥≥≥≥ 00020000 ⇒ 00025ce5 
19 02300001 ∧∧∧∧ 0007ffff = 00000001 ≥≥≥≥ 00040000  00025ce5  
20 02300001  ∧∧∧∧ 000fffff = 00000001  ≥≥≥≥ 00080000  00025ce5  
21 02300001  ∧∧∧∧ 001fffff = 00100001 ≥≥≥≥ 00100000 ⇒ 00125ce5 
22 11000001 ∧∧∧∧ 003fffff = 00000001 ≥≥≥≥ 00200000  00125ce5  
23 11000001  ∧∧∧∧ 007fffff = 00000001  ≥≥≥≥ 00400000  00125ce5  
24 11000001  ∧∧∧∧ 00ffffff = 00000001  ≥≥≥≥ 00800000  00125ce5  
25 11000001  ∧∧∧∧ 01ffffff = 01000001  ≥≥≥≥ 01000000 ⇒ 01125ce5 
26 fe000001 ∧∧∧∧ 03ffffff = 02000001 ≥≥≥≥ 02000000 ⇒ 03125ce5 
27 2d8000001 ∧∧∧∧ 07ffffff = 00000001 ≥≥≥≥ 04000000  03125ce5  
28 2d8000001  ∧∧∧∧ 0fffffff = 08000001 ≥≥≥≥ 08000000 ⇒ 0b125ce5 
29 a40000001 ∧∧∧∧ 1fffffff = 00000001 ≥≥≥≥ 10000000  0b125ce5  
30 a40000001  ∧∧∧∧ 3fffffff = 00000001  ≥≥≥≥ 20000000  0b125ce5  
31 a40000001  ∧∧∧∧ 7fffffff = 40000001 ≥≥≥≥ 40000000 ⇒ 4b125ce5 
32 4580000001 ∧∧∧∧ ffffffff = 80000001 ≥≥≥≥ 80000000 ⇒ cb125ce5 

 
FIG. 10. Iterative Execution of Second Algorithm. 

 
3,406,978,277 x 237 = 807,453,851,649 (0x00BC 00000001) ≡ 1 mod 2^32. 
 
 
4.2.4. Observations. 
 
 In the Second Algorithm it is seen (step 2.5) that a is computed as M0 • t. From 
the iterative example above it is seen that in each iteration i where M0 • t is recomputed, 
the new value is equal to sum of the previous value t and M0 shl (i-2). For example, when 
i = 7, M0 • t becomes 0x2241 , which is equal to the previous value of M0 • t, 0x4a1 , plus 
M0 shl 5, 0x1da0 . 
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 Secondly, step 2.5 completes by reducing ( M0 • t ) mod 2i. The iterative example 
represents this modulo by applying a logical and (∧) operation to M0 • t with j, which is 
always 2i-1. Following this, step 2.6 compares the modulus a to 2i-1. It can be seen from 
the iterative example above that the combination of the modulo and comparison (≥) 
operations can both be replaced by a test of the significant bit in 2i-1. For example, when i 
= 12, 0x48801  modulo 0xfff  produces 0x801 , which is then found to be greater than 2i-1, 
0x800 . The same is found by simply applying a logical and (∧) to M0 • t and 2i-1. 
 
 Finally, Step 2.4 iterates the algorithm from i = 2 to k. The sample 
implementation shows that the iteration i no longer needs to increment from 2 to k but 
can decrement from k-1 to zero. Moreover, by using a simple shl to recompute 2i-1 for 
each iteration i, we can see from the iterative example that 2i-1 shl 1 will produce zero 
(modulo b) when i > k. If we can test for this zero condition in 2i-1 following our shift, 
then we do not need to maintain an independent variable i for the sole purpose of loop 
counting. 
 
4.3. THE THIRD ALGORITHM. 
 
4.3.1. Exposition. 
 

The observations above can now be applied to produce the Third Algorithm. 
 

Input: k = the size of a word in binary digits. 
 b = the radix, or 2k. 
 m0 =  the least significant word of integer m, or m mod b. 
Output: m0' = -m-1 mod b. 
 
3.1 a ← m0 
3.2 t ← 1 
3.3 i ← 2 
3.4 r ← 3 
3.5 while i ≠ 0 begin 
3.6  if( a ∧ i ) begin 
3.7   t ← t ∨ i 
3.8   a ← a + r mod 2b 
3.9  end 
3.10  r ← r shl 1 mod 2b 
3.11  i ← i shl 1 mod 2b 
3.12 end 
3.13 return b - t 

 
FIG. 11. The Third Algorithm 
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4.3.2. Observations. 
 

In the Third Algorithm, the modulo 2b computation of a + r, r and i in steps 3.8, 
3.10, and 3.11 is accomplished implicitly when b is the size of the processor register or 
word. Therefore, no instructions need to be performed to accomplish any modulo 2b 
operation, if the result is stored in a register of size b bits. 
 

Secondly, the variable r may be initialized to 1 instead of 3 or, in other words, to 
2i-2, if the shift of r in step 3.10 is performed before the addition of r and a shown in step 
3.8. This is an improvement because it eliminates the final shift of r in the last iteration 
when i is found to be zero because the test of i is made before r is shifted. Furthermore, 
assigning an initial value of 1 to both t and r may be more efficiently accomplished if a 
register-to-register move instruction executes faster than an immediate-to-register move 
instruction. 
 
4.4. THE FOURTH ALGORITHM. 
 
4.4.1. Exposition. 
 

The observations above can now be applied to produce the Fourth Algorithm. 
 

Input: k = the size of a word in binary digits. 
 b = the radix, or 2k. 
 m0 =  the least significant word of integer m, or m mod b. 
Output: m0' = -m-1 mod b. 
 
4.1 a ← m0 
4.2 r ← m0 
4.3 t ← 1 
4.4 i ← 2 
4.5 while i ≠ 0 begin 
4.6  r ← r shl 1 
4.7  if( a ∧ i ) begin 
4.8   t ← t ∨ i 
4.9   a ← a + r mod 2b 
4.10  end 
4.11  i ← i shl 1 mod 2b 
4.12 end 
4.13 return b – t 

 
FIG. 12. The Fourth Algorithm 
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4.4.2. Sample Implementation. 
 
 We again represent our algorithm in assembly language for analysis. 
 

; in: [ebp+4] = M[0] 
; out: eax = -M[0]^-1 
 
 mov ebx,[ebp+4]  ; a := n 
 mov edx,ebx  ; r := n 
 mov ecx,2   ; i := 2  
 mov eax,1   ; t := 1 
_10: shl edx,1   ; r := ( r SHL 1 ) mod 2^b 
 test ebx,ecx  ; a & i ? 
 jz _20   ; no, skip ahead 
 or eax,ecx  ; t := t OR i 
 add ebx,edx  ; a := ( a + r ) mod 2^b 
_20: shl ecx,1   ; i := ( i SHL 1 ) mod 2^b 
 jnc _10   ; next i 
 neg eax   ; t := b - t 

 
FIG. 13. A Fourth Algorithm Implementation 

 
4.4.3. Iterative Example. 
 
 The table below represents the values assigned to the variables r, a, t and i 
through each iteration when b is 32 and the input n is 237 (0xED).  
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iteration r a t i 

 0x000000ed 0x000000ed 0x00000001 0x00000002 
1 0x000001da 0x000000ed 0x00000001 0x00000004 
2 0x000003b4 0x000004a1 0x00000005 0x00000008 
3 0x00000768 0x000004a1 0x00000005 0x00000010 
4 0x00000ed0 0x000004a1 0x00000005 0x00000020 
5 0x00001da0 0x00002241 0x00000025 0x00000040 
6 0x00003b40 0x00005d81 0x00000065 0x00000080 
7 0x00007680 0x0000d401 0x000000e5 0x00000100 
8 0x0000ed00 0x0000d401 0x000000e5 0x00000200 
9 0x0001da00 0x0000d401 0x000000e5 0x00000400 
10 0x0003b400 0x00048801 0x000004e5 0x00000800 
11 0x00076800 0x000bf001 0x00000ce5 0x00001000 
12 0x000ed000 0x001ac001 0x00001ce5 0x00002000 
13 0x001da000 0x001ac001 0x00001ce5 0x00004000 
14 0x003b4000 0x00560001 0x00005ce5 0x00008000 
15 0x00768000 0x00560001 0x00005ce5 0x00010000 
16 0x00ed0000 0x00560001 0x00005ce5 0x00020000 
17 0x01da0000 0x02300001 0x00025ce5 0x00040000 
18 0x03b40000 0x02300001 0x00025ce5 0x00080000 
19 0x07680000 0x02300001 0x00025ce5 0x00100000 
20 0x0ed00000 0x11000001 0x00125ce5 0x00200000 
21 0x1da00000 0x11000001 0x00125ce5 0x00400000 
22 0x3b400000 0x11000001 0x00125ce5 0x00800000 
23 0x76800000 0x11000001 0x00125ce5 0x01000000 
24 0xed000000 0xfe000001 0x01125ce5 0x02000000 
25 0xda000000 0xd8000001 0x03125ce5 0x04000000 
26 0xb4000000 0xd8000001 0x03125ce5 0x08000000 
27 0x68000000 0x40000001 0x0b125ce5 0x10000000 
28 0xd0000000 0x40000001 0x0b125ce5 0x20000000 
29 0xa0000000 0x40000001 0x0b125ce5 0x40000000 
30 0x40000000 0x80000001 0x4b125ce5 0x80000000 
31 0x80000000 0x00000001 0xcb125ce5 0x00000000 

 
FIG. 14. Iterative Example of Fourth Algorithm. 

 

 
5. Final Observations. 
 
5.1. PIPELINING. 
 
 Processors that support instruction pipelining may execute the algorithm more 
efficiently as follows since some sets of instructions can derive intermediate results 
independently. 
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 Path A   Path B 
 
 mov  ebx,[ebp+4]  mov  ecx,2 
 mov  edx,ebx  mov  eax,1 
 
_10: shl  edx,1   
 test ebx,ecx 
 jz   _20 
 
 add  ebx,edx  or   eax,ecx 
 
_20:     shl  ecx,1 
     jnc  _10 
     neg  eax 

 
FIG. 15. Pipelining. 

 
 
5.2. LOOP OPTIMIZATION . 
. 

Unrolling the iteration i loop and providing constant values for i for each r may 
improve the progression of values in i, if b is fixed. 
 
 

r = a = n; t = 1; 
r <<= 1; if( a & 0x00000002 ) { t |= 0x00000002; a += r }; 
r <<= 1; if( a & 0x00000004 ) { t |= 0x00000004; a += r }; 
 
//  ... 
//  repeat statement, doubling the constant 
//  ... 
 
r <<= 1; if( a & 0x80000000 ) { t |= 0x80000000; };  
 
return( t * -1 ); 

 
FIG. 16. Unrolling the Iteration Loop. 

 
 
 Note that in the final iteration, r need not be added to a since reference to a is no 
longer required. 
 
 This unrolling of r, while it eliminates both the shift if i and the comparison of i to 
zero, has the disadvantage of requiring an implementation that has an invariable b. 
Whereas, the looping variety, if implemented in a sufficiently high-level language, such 
as C, can function with any word size. 
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6. Implementations. 
 
6.1. INTEL X86-32 (IA32) (AT&T MNEMONICS). 
 

// in: edx = ODD n 
// out: eax = 1/n MOD 2^32 
 
 movl %edx,%ebx  //  a := n 
 movl $2,%ecx  //  i := 2 
 movl $1,%eax  //  t := 1 
 
_10: shll $1,%edx  //  r := ( r SHL 1 ) mod 2^s 
 testl %ecx,%ebx  //  a AND i ? 
 jz _20   //  no, skip ahead 
 
 orl %ecx,%eax  //  t := t OR i 
 addl %edx,%ebx  //  a := ( a + r ) mod 2^s 
 
_20: shll $1,%ecx  //  i := ( i SHL 1 ) mod 2^s 
 jnc _10   //  next i 

 
FIG. 17. Fourth Algorithm for IA32 (AT&T Mnemonics). 

 
 
6.2. INTEL X86-32 (IA32) (INTEL MNEMONICS). 
 

; in: edx = ODD n 
; out: eax = 1/n MOD 2^32 
 
 mov ebx,edx  ;   a := n 
 mov ecx,2   ;   i := 2  
 mov eax,1   ;   t := 1 
 
_10: shl edx,1   ;   r := ( r SHL 1 ) mod 2^s 
 test ebx,ecx  ;   a & i ? 
 jz _20   ;   no, skip ahead 
 
 or eax,ecx  ;   t := t OR i 
 add ebx,edx  ;   a := ( a + r ) mod 2^s 
 
_20: shl ecx,1   ;   i := ( i SHL 1 ) mod 2^s 
 jnc _10   ;   next i 

 
FIG. 18. Fourth Algorithm for IA32 (Intel Mnemonics). 
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6.3. S/390 ASSEMBLY LANGUAGE. 
 

* in: %4 = ODD n 
* out: %1 = 1/n MOD 2^32 
 
 lr 2,4 
 la 3,2 
 la 4,1 
 
 L10 ds 0h 
 
 sll 4,1 
 lr 5,3 
 nr 5,2 
 bc 8,L20 
 
 or 1,3 
 ar 2,4 
 
 L20 ds 0h 
 
 sll 3,1 
 or 3,3 
 bc 8,L10 

 
FIG. 19. Fourth Algorithm for S/390 Assembly Language. 

 
 
6.4. C. 
 

/* in: n (ODD)      */ 
/* out: t = 1/n MOD 2^sizeof( unsigned int ) */ 
 
unsigned int r, a, t, i; 
 
r = a = n; 
t = 1; 
 
for( i = 2; i; i <<= 1 ) { 
 r <<= 1; 
 if( a & i ) { 
  t |= i; 
  a += r; 
 } 
} 
 
return( t ); 

 
FIG. 20. Fourth Algorithm for C. 
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